Research Institutions

Brandenburgische Technische…, SenftenbergResearch Institution, Lighting Technology, Optical Analytics

- Development and Analysis of optical protection layers for organic and anorganic semiconductor products and circuits
- Characterization and Evaluation of the reliability and forecast of the life time of optical devices and devices under optical irradiation with regards to wavelength and intensity of light
- characterization of optical devices, light sources with respect to efficiency and optical performance using an integrating sphere up to 120cm in diameter
- generation of ELUMDAT files based on the optical results and performance of the optical devices
- development of methods for optical failure analysis e.g. hot spot thermography und emission microscopy

Brandenburgische Technische Universität (BTU) Cottbus-Senftenberg

Universitätsplatz 1
1968 Senftenberg

T: 03573 85 506 o.0357385523
Bundesanstalt für Materialforschung…, BerlinResearch Institution, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Biophotonics and Ophalmic Optics

BAM improves safety in technology and chemistry through research and development, testing, analysis, approvals, advice and information. Based on research work and long-term expert knowledge BAM department 6 (Materials Protection and Surface Technology) contributes to the functional reliability of technical products, constructions and plants which are subject to complex mechanical, chemical, physical, thermal or climate exposure. Optical methods and processes are used in divisions 6.4, 6.7, and 6.8.

Bundesanstalt für Materialforschung und -prüfung (BAM)

Unter den Eichen 87
12205 Berlin

T: 030 8104-1609
Bundesanstalt für Materialforschung…, BerlinResearch Institution, Lighting Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Biophotonics and Ophalmic Optics

 

Research at division Biophotonics focuses on optical spectroscopic methods for spectrally, time-, and spatial resolved measurements and the characterization of the interaction of matter and light, for example for applications in materials research, optical technologies, nano- and nanobiophotonics, bioanalytics, medicine, environmental chemistry, pharmacy, bioengineering, and biotechnology. Current research activities include the design, the traceable spectroscopic and photophysical characterization, and applications of functional organic, inorganic, molecular and nanoscale systems and hybrid nanoscale materials such as organic and metallo-organic chromophores, luminescent nanocrystals, luminophore-doped nanoparticles and their bioconjugates. 

The overall goals of this research are to utilize these materials as optical reporters, probes and sensors e.g., in material, bioanalytics, and bioimaging as well as to answer fundamental questions regarding underlying photophysical principles, to develop multiplexing and barcoding strategies, and to further develop their areas of application. This includes the absolute measurement of the performance parameter photoluminescence quantum yield and the characterization of the optical properties of transparent and scattering luminescent systems like solutions, particle dispersions, films, and solids. Another research area presents the methodical developments of surface functionalization procedures and functional group and ligand analysis and quantification on 2D- and 3D-supports, signal enhancement strategies, and the interaction with biological systems. This also comprises of the development of innovative optical-spectroscopic methods for bioanalytical and material sciences applications. 

In the working area standardization of optical measurements with focus on fluorescence techniques, we develop quality assurance and standardization concepts and validate spectroscopic methods for bioanalytical and material sciences applications. This includes the development of traceable standards, certified reference materials, and versatile calibration tools for instrument characterization in different measurement geometries and the determination of fluorometric parameters. Also, custom-designed solutions for such concepts and standards are provided.
 

 

Bundesanstalt für Materialforschung und –prüfung (BAM); Division 1.2 Biophotonics

Dr. Ute Resch-Genger
Richard-Willstätter-Str. 11
12489 Berlin

T: +49 (0)30 / 81045574
Deutsches Zentrum für Luft- und…, BerlinResearch Institution, Laser Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Microelectronic and Mikrosystems Technology

The main expertise of this Institute is the development of intelligent sensors and data processing software solutions for commercial, industrial and scientific purposes.

Some of the Institute key products and applications are shown in the figure above, these application are used today for the latest airborne and satellite technology. The knowledge and spin-offs gained from such products have been passed on to commercial and industrial users, and are now used for technology transfer projects for commercial and industrial purposes.

The institute is also dedicated to scientific and research activities, for this education and technology transfer plays a major role, the institute is currently involved with partnerships with global universities and fellow institutes in conducting international summer schools for students, and encouraging and promoting student transfer and scholarships for PhD students.

The Institute also defines and develops geometrically and/or spectral high-resolution sensor systems in the visible and infrared area of the electromagnetic radiation as well as the thematic real time processing of picture data for information relevant for users for strategically purposes. The operational application for such sensors requires an extensive autonomy which allows the independent operating of the system which is used in the development and building of small satellites.

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institut für Optische Sensorsysteme

Rutherfordstraße 2
12489 Berlin

T: +49 30 67055-509
Fraunhofer-Institut für Zelltherapie…, Potsdam OT GolmResearch Institution, Optical Analytics, Biophotonics and Ophalmic Optics, Microelectronic and Mikrosystems Technology

Fraunhofer HHI does research and development in the areas of photonic components and networks, fiber optic sensor systems, mobile networks, and video coding and transmission. With our 300 employees and 200 students, we focus on enabling the continuous growth of internet traffic, and on developing new sensor technologies for various applications. Due to our long standing history in research, nowadays every internet user is in contact – without knowing – with our technologies: Every second bit transported in the internet is a H.264 or H.265 encoded movie. HHI is a major contributor to these standards, which are installed on about two billion devices. Every second bit transported in the internet also touches on of our photonic components, which serve as optoelectronic converters in the nodes of the network.

Fraunhofer-Institut für Zelltherapie und Immunologie IZI-BB

Am Mühlenberg 13
14476 Potsdam OT Golm

T: 0331 58187200
Fraunhofer-Institut für…, BerlinResearch Institution, Laser Technology, Lighting Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Biophotonics and Ophalmic Optics, Microelectronic and Mikrosystems Technology

Fraunhofer IZM specializes in industry-oriented applied research. Fraunhofer IZM develops assembly and interconnection technology, also known as electronic/photonic packaging. Almost invisible and undervalued by many, electronic packaging is at the heart of every electronic application. Our technologies connect the individual components, protect components and devices from vibration and moisture, and reliably dissipate heat. Fraunhofer IZM thus ensures that electronic devices continue to function reliably in even the harshest conditions – we even integrate electronics into golf balls. Modern packaging technologies make developing smaller and smaller products possible. We process ICs thinner than a sheet of paper.

The business area Photonics combines Fraunhofer IZM’s skills and know-how to tackle challenges in telecommunication, data communication, light generation, materials processing and optical sensors.
We pursue different goals in each of these areas. In communication, broadband capacity, power efficiency, high, heterogeneous packaging density are the main focus, while in lighting, we aim to improve high power density, thermal management, multifunctional integration, wavelength conversion and beam guiding. In sensor technology, application-specific heterointegration of excitation source, sensor and analysis electronics take center-stage. However, three goals are pursued across all these areas: volume adjusted manufacturing technology, cost-efficiency and high yield.

Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM)

Gustav-Meyer-Allee 25
13355 Berlin

T: +49 (30) 46403-219
Helmholtz-Zentrum Berlin für…, BerlinResearch Institution, Laser Technology, Optical Analytics, Microelectronic and Mikrosystems Technology

Branches
Synchrotronstrahltechnik, non-university research, research and development, scientific facilities

Business focus
The Helmholtz-Zentrum Berlin operates two scientific large scale facilities for investigating the structure and function of matter: the research reactor BER II for experiments with neutrons and the synchrotron radiation source BESSY II, producing an ultra bright photon beam ranging from Terahertz to hard X-rays.

Focus
Accelerator development and operation, development of photon and neutron optics Research: Magnetic Materials, Functional Materials, Materials for Solar Energy Technology Research Methods: High-resolution photoelectron spectroscopy (PES), Infrared and terahertz spectroscopy, Photoemission Electron Microscopy (PEEM), Soft X-ray Emission Spectroscopy (SXA, SXE, RIXS), X-ray Absorption Spectroscopy (XAS, NEXAFS, EXAFS), X-ray microscopy.

Technology Fields
Photonics and Optical Technologies
Photovoltaics

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Hahn-Meitner-Platz 1
14109 Berlin

T: +49 (0)30 / 8062-12945
innoFSPEC Potsdam, PotsdamResearch Institution, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Biophotonics and Ophalmic Optics

The centre for innovation competence innoFSPEC Potsdam pursues multidisciplinary research in the field of innovative fibre-optical spectroscopy and sensing. As a joint initiative of the Leibniz Institute for Astrophysics Potsdam (AIP) and the Physical Chemistry group of Potsdam University (UPPC), innoFSPEC unites competences in the areas of imaging multichannel spectroscopy, fibre-optical chemical sensing and multidimensional data processing. Aside from physical-chemical analysis of gases, nano- and microstructured materials like emulsions and suspensions, chemical and biotechnological processes as well as medical applications, astrophotonic components (e.g. complex Fibre-Bragg Gratings) for astrophysical applications are within the focus of interest. Also du to its excellent experimental facilities, innoFSPEC enjoys vivid collaborations with many regional, national and international partners from academia and industry alike.

innoFSPEC Potsdam

An der Sternwarte 16
14482 Potsdam

T: 0331 7499 6229
Institut für angewandte Photonik…, BerlinResearch Institution, Optical Analytics

Non-profit private industrial research institute, realisation of projects in the field of fundamental and applied research especially in Photonics, X-ray physics and X-ray technology. Main competence: X-ray analytics for technological process control Photonic crystal fibres for laser applications. Organisation of workshops, conferences and exhibitions in these fields also for further education. Since 2001 every two years the conference PRORA “X-ray analytics for technological process control will be organised by IAP including an industrial exhibition of leading manufacturers of instruments for scientific and industrial applications, participants mainly from Germany and other European countries.

Institut für angewandte Photonik e.V.

Rudower Chaussee 31
12489 Berlin

T: +49 (0)30 / 6392 6503
Leibniz Institute for Analytical…, BerlinResearch Institution, Optical Analytics, Biophotonics and Ophalmic Optics, Microelectronic and Mikrosystems Technology

The Leibniz-Institute for Analytical Sciences – ISAS provides innovative solutions for analytical challenges in modern material and life sciences. The range of our scientific works reaches from fundamental research via developing analytical procedures, techniques and instruments through prototype manufacturing to validation and testing of the results. Thus, we can directly implement methodic developments into new applications. The institute unites scientists from various fields under one roof: e.g. physicists, chemists, biologists and engineers. We are closely connected to the Universities in Dortmund (TU Dortmund), Bochum (Ruhr-University Bochum) and Berlin (TU Berlin) by joint professorships. Our research is geared to the key topics of material science and optical technologies and biomedical research and technologies.
In the Berlin department of ISAS optical spectroscopy is developed for material- interface- and process- analytics. Applications range from analysis of minutest amounts of material to particularly interfaces and nanostructures. Polarisation dependent optical spectroscopy- at ISAS employed in the spectral range from the far IR to vacuum-UV - gives information about composition, structure and electronic properties of a system. Apart from inorganic nanostructures particularly organic molecules as “predefined” units in functional layers and at interfaces become increasingly im-portant. Such structures are technologically important for instance in sensorics, biotechnology, photovoltaics and optoelectronics.

Leibniz Institute for Analytical Sciences – ISAS e.V.

Schwarzschildstr. 8
12489 Berlin

T: +49 (0)30 / 6392 3530
Max-Born-Institute for Nonlinear…, BerlinResearch Institution, Laser Technology, Optical Analytics

The Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) conducts basic research in the field of nonlinear optics and ultrafast dynamics of lightmatter interactions. It pursues applications which emerge from this research. Ultrashort pulses in a wide spectral range from the far-infrared to hard x-rays, nonlinear phenomena and high intensities are key aspects of this mission for which lasers are both a topic and a tool of research.

The MBI is involved in a large variety of cooperative research projects with universities, research institutions and industrial partners. It offers its facilities and scientific know-how to external researchers within the framework of a guest program.

Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI)

Max-Born-Strasse 2A
12489 Berlin

T: +49 (0)30 / 63921402
Optotransmitter-Umweltschutz-Technol…, BerlinResearch Institution, Lighting Technology, Optical Analytics, Biophotonics and Ophalmic Optics, Microelectronic and Mikrosystems Technology

The OUT e.V. was founded in 1991 as an innovative external research institution.
OUT e.V. is a nonprofit-registered association of private law. The statuary aim of OUT e.V. is to promote science and research, especially in the fields of micro and optoelectronics as well as environmental technologies. Members are SMEs, other research institutions and individual persons.

Out e.V. promotes and carries out industrial and basic research and development of prototypes in the fields of optoelectronics, thin film technologies, sensors and data processing. The institution owns two special laboratories with modern measurement equipment and simulation software.

OUT e.V. offers a wide range of successful, active international network management for SMEs working in the field of security technologies.

OUT e.V. has many years of experience in project coordination for single projects and research cooperation of varying scale.

OUT e.V. is a dynamic, mature research institution and exemplifies flexible networking between industry and research partners with the help of government support. OUT e.V. is always open to new and innovative technical fields for the benefit of the whole society.

OUT e.V. is a dynamic, mature research institution and exemplifies flexible networking between industry and research partners with the help of government support. OUT e.V. is always open to new and innovative technical fields for the benefit of the whole society.

Optotransmitter-Umweltschutz-Technologie e.V.

Köpenicker Str. 325, Haus 201
12555 Berlin

T: +49 (0)30 / 609 847 20
Technical University Berlin - Berlin…, BerlinResearch Institution, Optical Analytics, Biophotonics and Ophalmic Optics

The Berlin Laboratory for innovative X-ray Technologies (BLiX) aim to transfer technology in the field of X-ray technologies. Our vision goes beyond the idea of a bilateral, unidirectional transfer from science to industry. BLiX is rather a place of collaborative technology development in the knowledge triangle of research - education - innovation. BLiX is operated jointly by the Technical University of Berlin and the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy. BLiX is located at the Endowed Chair for Analytical X-Ray Physics of Prof. Birgit Kannengießer.

We support your company in your research and development via

  • Joint projects
  • Access to our measurement stations and our instrumentation
  • Advice, support and referral to our partners

We provide access to modern methods of X-ray spectroscopy via

  • Demonstrators and prototypes for new methods
  • Referral to our partners
  • Support and assistance with experiments

We school and train with

  • Continuing education courses
  • Master and doctoral theses

Technical University Berlin - Berlin laboratory for innovative X-ray technologies (BLiX)

Hardenbergstr. 36
10623 Berlin

T: +49 (0)30 / 314 25108
Technical University Berlin -…, BerlinResearch Institution, Laser Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Biophotonics and Ophalmic Optics

The group's activities are focused on the research of light-matter-interaction and its applications. The research, development and education are carried out in an international surrounding of science and industry. Different materials are investigated for their linear and nonlinear properties and transferred into possible applications. Current topics are:

Nonlinear Optics and Optical Spectroscopy

  • Colloidal nanoparticles and quantum dots in life sciences, labeling, as a biomarker, in photovoltaics and as single-photon sources
  • Semiconductor structures of low dimensionality and their optical properties
  • Nanoscaled Quantum Systems as potential ultrafast amplifiers and switches
  • Hybrid semiconductor / metal nanostructures for fundamental principles and applications in active and passive nano-plasmonics

Laser Development and Laser Material Processing

  • Development of powerful diode and lamp pumped solid-state lasers in the near infrared spectral range from 1 to 2 µm, especially in the eye-safe region from 1.5 to 1.7 µm for material processing, medical and remote sensing applications
  • Optimization of neodymium and erbium based laser sources with respect to their spectral and spatial characteristics
  • Spectroscopic investigation of crystalline materials in terms of stimulated Raman scattering and further second and third order nonlinear effects
  • Development of compact Raman lasers for efficient conversion of the emission wavelength of existing laser sources

Optical Thin Film Coatings

  • Calculation, preparation and characterization of dielectric and metal thin film systems for reflective and anti-reflective optical surfaces and for the production of spectral filters, beam splitters and functionalized surfaces
  • Antireflection coatings of the terminal surfaces of glass fibers used for the construction of fiber lasers and for transmitting high laser power, e.g. used in material processing and medical therapeutic applications
  • Manufacture of hybrid thin film structures on the end-faces of optical fibers for the development of optical fiber sensors, fiber coupled modulators for data communication, and other innovative applications

Silicon-Photonics

  • Development and characterisation of integrated electro-optic components fabricated in a BiCMOS production process on Silicon-On-Insulator (SOI) wafers. This includes the development of optical couplers, splitters, spectral filters and resonators as well as active electro-optic structures e.g. modulators, Raman amplifiers and delay generators
  • In addition, complex photonic integrated circuits are designed for transceiver applications in optical data communication
  • The worldwide smallest high speed modulator in SOI has been demonstrated at the Institute of Optics an Atomic Physics

Technical University Berlin - Institut für Optik und Atomare Physik

Straße des 17. Juni 136
10623 Berlin

T: +49 (0)30 / 314 21699
Technical University Wildau, WildauResearch Institution, Laser Technology, Lighting Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Microelectronic and Mikrosystems Technology

Technical University Wildau – A Competent Partner for Commercial Businesses and Scientific Institutions

The opening of the Technical University Wildau in 1991 has resulted in academic teaching as well as scientific research and development becoming firmly established and highly esteemed in the region to the south-east of Berlin. Not only businesses and scientific institutions, but also public administrative bodies all profit directly from this development by being able to recruit Wildau graduates directly as young specialists and managers. They also benefit from R&ampD cooperation and projects, networks for knowledge and technology transfer in addition to further-training programmes which can be tailor-made for companies and a wide range of institutions.

Documented quality control and direct practical relevance are the outstanding hallmarks of 28 degree courses on offer, ranging from engineering, business and administration to legal studies, available both on campus and via distance learning. With more than 4,200 students Wildau is the biggest university in the regional state of Brandenburg. Changing from diploma to bachelor and master programmes has considerably strengthened the academic character of the Technical University Wildau.

Photonic, Laser and Plasma Technologies

Professor Sigurd Schrader’s working group is active in the areas of photonics, optical technologies, laser and plasma technologies, both in teaching and applied research. This group is involved in the following fields:

  • Material syntheses and experiments
  • Producing optoelectronic elements and components
  • Characterizing optoelectronic elements and components
  • Process characterization and optimization

This research group cooperates closely with industrial partners, mainly small and medium-sized companies situated in the Berlin-Brandenburg capital region. Additionally, as a participant in national and international networks it has considerable contact with research institutions and universities. There is also direct cooperation on a contractual basis with the IHP Leibniz Institute for Innovative Microelectronics Ltd in Frankfurt an der Oder, which had led to their joint research and training centre (Joint Lab). The main focus of this activity is to develop concepts for innovative silicon based elements and technologies for high-speed electronics and photonics. Among Joint Lab’s activities are experiments aimed at generating graphic layers in order to attain higher limit frequencies up to the terahertz level. This may lead to new applications in sensorics and medical technology.
See www.th-wildau.de/forschungsgruppen/ag-schrader/startseit-ag-schrader.html

Microsystems Technology

Microsystems Technology is represented in the teaching and applied research carried out by Professor Andreas Foitzik. Hardware content is predominant in this field and the focus is on biological microsystems technology for life-science products and applications. A dust-free room (for structures as small as a nanometre) and a plastics laboratory (for the quick implementation of prototypes) are available. The wide range of research areas includes:

  • Elements for biochips and biosensors
  • Reactors in macro and micro fields (including microfluidics)
  • Processing surface structures
  • Constructing and joining technology (joining smaller elements to a larger system)
  • Integrating circuits (signal connection between the micro and macro world)
  • Measuring and regulating the overall system
  • Microstructuring
  • Micro injection moulding of small plastic elements
  • Cutting plastic or metal micro elements
  • Mechanical and optical material examination

The group’s expertise and infrastructure are available for applications beyond biological microsystems technology.
See www.th-wildau.de/en/im-studium/fachbereiche/igw-studiengaenge/bb-forschu...

Technical University Wildau

Hochschulring 1
15745 Wildau

T: +49 (0)3375-508119
Universität Potsdam, PotsdamResearch Institution, Laser Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Biophotonics and Ophalmic Optics, Microelectronic and Mikrosystems Technology

Die Physikalische Chemie der Universität Potsdam (UPPC, s.www.chem.uni-potsdam.de/groups/pc) ist Teil des Instituts für Chemie und hat ihren Sitz am neuen naturwissenschaftlichen Campus in Potsdam-Golm, der Teil des Golmer Wissenschaftsparks ist. Unter Leitung von Prof. Dr. Hans-Gerd Löh-mannsröben, apl. Prof. Dr. Michael U. Kumke und JProf. Dr. Ilko Bald führt UPPC die Ausbildung in den naturwiss. Bachelor- und Masterstudiengängen in der Teildisziplin „Physikalische Chemie“ durch und ist stark in der Doktorandenausbildung engagiert. Sehr erfolgreich ist die Beteiligung an der Graduiertenschule SALSA, 2012 Siegerin im Exzellenzwettbewerb des Bundes und der Länder.

Grundlagen- und Anwendungsforschung in Photochemie und Photophysik, Laserspektroskopie und optischer Sensorik sind die Kernkompetenzen von UPPC. Die Untersuchung von elementaren Gasphasenreaktionen mit laserbasierter Ionenmobilitäts (IM)-Spektrometrie als ein spannendes Beispiel für die Erforschung von fundamentalen physiko-chemischen Phänomenen und die Entwicklung optischer Detektionsschemata für die point-of-care Diagnostik von Biomarkern für Lungenkrebs- und Alzheimer-Erkrankun¬gen verdeutlichen das breite Spektrum der Aktivitäten und Expertisen.
Die Berufung von JProf. Dr. Ilko Bald (Jan. 2013) ist eine wichtige wissenschaftliche und personelle Verstärkung (s. www.uni-potsdam.de/osci). Beispiele für faser-basierte optische Methoden, in denen UPPC eine führende Rolle innehat, sind die Photonendichtewellen (PDW)-Spektroskopie (Bunsen-Kirchhoff-Preis für Dr. Oliver Reich 2014, spin-off-Firma PDW Analytics) sowie die O2- und pH-Sensorik auf mikroskopischer und zellulärer Ebene (spin-off-Firma Colibri Photo¬nics). Die hervorragende F&ampE-Infrastruktur verbun-den mit einer erstklassigen instrumentellen Ausstattung, beides noch deutlich gesteigert durch den Bezug des Drittmittelzentrums (Haus 29) im Herbst 2013, sowie die ausgeprägte interdisziplinäre Anlage der Forschungsthemen zeichnen UPPC als exzellenten Forschungspartner aus. Derzeit sind ca. 50 Mitarbeiter/innen an 15 F&E-Vor-haben mit regionalen, nationalen und internationalen Forschungs- und Industriepartnern beteiligt. Gemeinsam mit dem Leibniz-Institut für Astrophysik Potsdam (AIP) wird UPPC das Zentrum für Innovationskompetenz inno-FSPEC Potsdam, gerade (August 2016) mit der weiteren BMBF-Förderung 2016 – 2020 ausgezeichnet, zu einem nationalen Exzellenzzentrum für faseroptische Spektroskopie und Sensorik entwickeln.

F&E-Programme und Projekte von UPPC (Auswahl, Kurztitel, Stichpunkte i. Klammern)

(I) „Zentrum für Innovationskompetenz inno-FSPEC Potsdam. Innovative faseroptische Spektroskopie und Sensorik“, Sieger in BMBF-Wettbewerben 2008 und 2015 (faserbasierte chemische Sensorik und optische Vielkanalspektroskopie, Vielfachstreuung, Photonendichtewellen, Angewandte Analytische Photonik, seit 2009).

(II) „Geochemische Radionuklidrückhaltung an Zementalterationsphasen (GRaZ)“, BMWi-Verbundvorhaben (molekulares Prozessverständnis, Wechselwirkungen von Lanthanoiden mit Komponenten homogener und heterogener salinarer Systeme, 2015 – 2018).

(III) Nachwuchsgruppe „Angewandte Laser-sensorik in komplexen Biosystemen (ALS ComBi)“, BMBF, Sieger im Wettbewerb Inno-Profile-Transfer 2012 (super resolution Spek-troskopie, Einzelmolekül- &amp Einzelzell-Detek-tion, photonische Kristallfasern, Atomkraft-Mikroskopie, Optogenetik, 2012 – 2017).

(IV) „School of Analytical Sciences Adlershof (SALSA)“, Exzellenzgraduiertenschule (Analytik in Bio- und Lebenswissenschaften, Bild¬gebung und Mikroskopie, 2012 – 2019, derzeit 6 Doktoranden bzw. Doktorandinnen).

(V) „Nanopartikel-basierte photonische Vor-Ort-Analytik von Endotoxinen in Biopharmazeutika (EndoProve)“, BMBF-Verbundprojekt (Quantenpunkte als photonische Sonden, Aptamere-Erkennungselemente, 2015 – 2018).

(VI) „Entwicklung innovativer bestandsspezifischer Impfstoffe für Geflügel, innoVAK4¬DART“, BMEL-Verbundprojekt (Charakterisierung von Bakterien durch Fluoreszenzmikroskopie und Durchflußzytometrie, Photo-Inaktivierung, 2014 – 2017).

(VII) „Sensorsystem für Methan-Monitoring b. Schiefergasgewinnung“, BMWi ZIM-Koop.-Projekt, (CH4-Lasersensorik, 2014 – 2016).

(VIII) „Rohstoffscreening mit spektral-opti-schen Verfahren bei der Getreidelagerung (OptiScreen)“, BMEL-Verbundprojekt (Myko-toxin-Detektion, Fluoreszenzspektroskopie an Getreide, IMS-Analytik, 2015 – 2018).

(IX) „Intelligence for Soil. Integrated System for Site-Specific Soil Fertility Management (I4S)”, BMBF-Verbundvorhaben (2015 – 18).

(X) „Photonisch-mikrofluidisches Produktionsverfahren zur ultraschnellen Herstellung maßgeschneiderter monoklonaler Antikörper (Affinity Track)“. StaF-Programm (2017 – 19)

(XI) Industrieprojekte “UV Absorber” und “Lebensmitteldispersionen (2016 – 17)

Instrumentierung von UPPC

Umfassende optisch-spektroskopische Instrumentierung, Spektralbereich 200 nm – 10 µm, hohe spektrale, zeitliche (sub ps) und räumliche (sub µm) Auflösung, Mikroskopie und Bildgebung. Erstklassige instrumentelle Ausstattung mit Investitionsmaßnahmen von ca. 10 Mio. € seit 2001. Derzeit Ausstattung s. www.chem.uni-potsdam.de/groups/pc/. Beispiele:

• Diverse Laserapparaturen mit Absorptions- und Emissionsdetektion
• Einzelmolekülspektrometer
• Fluorescence-Imaging-Mikroskop-System
• PDW-, Lichtstreu- und Photonenkorrelationsspektrometer
• Ionenmobilitäts- und Massenspektrometer
• Fasertechnologie und –fusionsspleißgerät
• Ultrakurzpuls Ti:Sa-Laser mit Nachver-stärkung, Frequenzkonversion und OPA
• Schreibstand für Faser-Bragg-Gitter
• Durchflusszytometer
• Mikro-Thermophorese NanoTemper

Universität Potsdam

Karl-Liebknecht-Str. 24/25
14476 Potsdam

T: 0331 977 5222
UP Transfer GmbH an der Universität…, PotsdamResearch Institution, Laser Technology, Lighting Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Biophotonics and Ophalmic Optics, Microelectronic and Mikrosystems Technology

The main task of the company is to organize a modern and competitive knowledge and technology transfer at the University of Potsdam as well as in the region, but also on a national and international scale. The goal is the effective addition of excellence in research and teaching by a professional transfer of results from science and research.

The Department of Executive Education currently focuses on:
• Master degree programs in the areas of Public Administration and Private Management,
• Certificate courses in Mediation
• Scientific training courses;
• International projects in further education;
• Projects for refugees and migrants.

The projects of the Department of Applied Research &amp Development mainly focus on:
• Basic research;
• Applied research and development;
• Contract research;
• Scientific and technical consulting and services.

Important research areas are especially antibody research, inorganic chemistry research to improve the recycling of valuable precious and rare earth metals, laser development, material research of innovative polymer materials, geoscience research and consulting services.

The Department of UP Transfer Services offers the following services:
• Conference services mainly for scientific events;
• Patent licensing for higher education and research institutions of Brandenburg (Project “Brainshell”);
• UniShop of the University of Potsdam, selling a great variety of merchandising products;
• Project management and controlling;
• Administrative services.

UP Transfer GmbH an der Universität Potsdam

Am Neuen Palais 10
14469 Potsdam

T: 0331/977-1119