Research Institutions

Außenstelle des Fraunhofer-Instituts…, CottbusResearch Institution, Photonics and Quantum Technologies for Communication and Sensors, Biophotonics and Ophalmic Optics, Microelectronic and Mikrosystems Technology

Micro actuators and sensors are the fundamentals of miniaturized, intelligent and networked systems. Since 2012, a completely new type of powerful actuators has been developed and tested in the project group Mesoscopic Actuators and Systems MESYS of the Fraunhofer Institute for Photonic Microsystems IPMS in cooperation with the Brandenburg University of Technology BTU Cottbus - Senftenberg. Electrostatic actuators are used to move plates or bend cantilevers and therefore deflect light or laser beams, move liquids or generate ultrasound. The researchers aim is to solve fundamental problems and limitations of conventional electrostatic actuators, for which large deflections can only be realized in combination with large dimensions and high energy consumption. Using a suitable lever principle, the researchers developed a new class of electrostatic bending actuators that of an extremely compact design, large deflections and no hysteresis. Using conventional silicon manufacturing processes, these new actuators can be integrated directly into semiconductor components and CMOS circuits, thus enabling cost-effective volume production. Thanks to high performance and scalability of the patented actuators, various fields of application and design possibilities can be adressed. Optical applications are, for example, high-precision positioning drives of micro-tilt mirrors or lens systems for laser beam deflection, pico projectors, 3D-endoscopes or microscopic applications. NED-actuators are also suitable as optical switches or the highly precise positioning of optical waveguides. Furthermore, a variety of non-optical applications can be addressed, such as micro pumps and valves for microfluidic systems or as miniaturized loudspeakers for hearing aids, smartphones and wearables. Contrary to existing micromechanical loudspeakers NED-based speakers offer both an extremely compact design and high performance.

Außenstelle des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS an der BTU Cottbus-Senftenberg

Postfach 101344
3046 Cottbus

T: 0355/692441
Ferdinand-Braun-Institut gGmbH,…, BerlinResearch Institution, Laser Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Microelectronic and Mikrosystems Technology

The Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik (FBH) researches electronic and optical components, modules and systems based on compound semiconductors. These devices are key enablers that address the needs of today’s society in fields like communications, energy, health and mobility. Specifically, FBH develops light sources from the visible to the ultra-violet spectral range: high-power diode lasers with excellent beam quality, UV light sources and hybrid laser systems. Applications range from medical technology, high-precision metrology and sensors to optical communications in space. In the field of microwaves, FBH develops high-efficiency multi-functional power amplifiers and millimeter wave frontends targeting energy-efficient mobile communications as well as car safety systems. In addition, compact atmospheric microwave plasma sources are devellopped for medical applications or surface coating.

The FBH is a competence center for III-V compound semiconductors and has a strong international reputation. FBH competence covers the full range of capabilities, from design to fabrication to device characterization.

In close cooperation with industry, its research results lead to cutting-edge products. The institute also successfully turns innovative product ideas into spin-off companies. Thus, working in strategic partnerships with industry, FBH assures Germany’s technological excellence in microwave and optoelectronic research.

The Ferdinand-Braun-Institut develops high-value products and services for its partners in the research community and industry which are tailored precisely to fit individual needs. The institute offers its international customer base complete solutions and know-how as a one-stop agency – from design to ready-to-ship modules.

Research topics & competencies:

  • Diode lasers
  • Gallium nitride optoelectronics
  • Microwave components & systems
  • Gallium nitride electronics
  • Materials and process technology
Related News

Ferdinand-Braun-Institut gGmbH, Leibniz-Institut fuer Hoechstfrequenztechnik (FBH)

Gustav-Kirchhoff-Str. 4
12489 Berlin

T: +49 (0)30 / 6932-2602
Fraunhofer-Institut für…, BerlinResearch Institution, Laser Technology, Lighting Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Biophotonics and Ophalmic Optics, Microelectronic and Mikrosystems Technology

Fraunhofer IZM specializes in industry-oriented applied research. Fraunhofer IZM develops assembly and interconnection technology, also known as electronic/photonic packaging. Almost invisible and undervalued by many, electronic packaging is at the heart of every electronic application. Our technologies connect the individual components, protect components and devices from vibration and moisture, and reliably dissipate heat. Fraunhofer IZM thus ensures that electronic devices continue to function reliably in even the harshest conditions – we even integrate electronics into golf balls. Modern packaging technologies make developing smaller and smaller products possible. We process ICs thinner than a sheet of paper.

The business area Photonics combines Fraunhofer IZM’s skills and know-how to tackle challenges in telecommunication, data communication, light generation, materials processing and optical sensors.
We pursue different goals in each of these areas. In communication, broadband capacity, power efficiency, high, heterogeneous packaging density are the main focus, while in lighting, we aim to improve high power density, thermal management, multifunctional integration, wavelength conversion and beam guiding. In sensor technology, application-specific heterointegration of excitation source, sensor and analysis electronics take center-stage. However, three goals are pursued across all these areas: volume adjusted manufacturing technology, cost-efficiency and high yield.

Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM)

Gustav-Meyer-Allee 25
13355 Berlin

T: +49 (30) 46403-219
Institut für angewandte Photonik…, BerlinResearch Institution, Optical Analytics

Non-profit private industrial research institute, realisation of projects in the field of fundamental and applied research especially in Photonics, X-ray physics and X-ray technology. Main competence: X-ray analytics for technological process control Photonic crystal fibres for laser applications. Organisation of workshops, conferences and exhibitions in these fields also for further education. Since 2001 every two years the conference PRORA “X-ray analytics for technological process control will be organised by IAP including an industrial exhibition of leading manufacturers of instruments for scientific and industrial applications, participants mainly from Germany and other European countries.

Institut für angewandte Photonik e.V.

Rudower Chaussee 31
12489 Berlin

T: +49 (0)30 / 6392 6503
Technical University Wildau, WildauResearch Institution, Laser Technology, Lighting Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Microelectronic and Mikrosystems Technology

Technical University Wildau – A Competent Partner for Commercial Businesses and Scientific Institutions

The opening of the Technical University Wildau in 1991 has resulted in academic teaching as well as scientific research and development becoming firmly established and highly esteemed in the region to the south-east of Berlin. Not only businesses and scientific institutions, but also public administrative bodies all profit directly from this development by being able to recruit Wildau graduates directly as young specialists and managers. They also benefit from R&ampD cooperation and projects, networks for knowledge and technology transfer in addition to further-training programmes which can be tailor-made for companies and a wide range of institutions.

Documented quality control and direct practical relevance are the outstanding hallmarks of 28 degree courses on offer, ranging from engineering, business and administration to legal studies, available both on campus and via distance learning. With more than 4,200 students Wildau is the biggest university in the regional state of Brandenburg. Changing from diploma to bachelor and master programmes has considerably strengthened the academic character of the Technical University Wildau.

Photonic, Laser and Plasma Technologies

Professor Sigurd Schrader’s working group is active in the areas of photonics, optical technologies, laser and plasma technologies, both in teaching and applied research. This group is involved in the following fields:

  • Material syntheses and experiments
  • Producing optoelectronic elements and components
  • Characterizing optoelectronic elements and components
  • Process characterization and optimization

This research group cooperates closely with industrial partners, mainly small and medium-sized companies situated in the Berlin-Brandenburg capital region. Additionally, as a participant in national and international networks it has considerable contact with research institutions and universities. There is also direct cooperation on a contractual basis with the IHP Leibniz Institute for Innovative Microelectronics Ltd in Frankfurt an der Oder, which had led to their joint research and training centre (Joint Lab). The main focus of this activity is to develop concepts for innovative silicon based elements and technologies for high-speed electronics and photonics. Among Joint Lab’s activities are experiments aimed at generating graphic layers in order to attain higher limit frequencies up to the terahertz level. This may lead to new applications in sensorics and medical technology.
See www.th-wildau.de/forschungsgruppen/ag-schrader/startseit-ag-schrader.html

Microsystems Technology

Microsystems Technology is represented in the teaching and applied research carried out by Professor Andreas Foitzik. Hardware content is predominant in this field and the focus is on biological microsystems technology for life-science products and applications. A dust-free room (for structures as small as a nanometre) and a plastics laboratory (for the quick implementation of prototypes) are available. The wide range of research areas includes:

  • Elements for biochips and biosensors
  • Reactors in macro and micro fields (including microfluidics)
  • Processing surface structures
  • Constructing and joining technology (joining smaller elements to a larger system)
  • Integrating circuits (signal connection between the micro and macro world)
  • Measuring and regulating the overall system
  • Microstructuring
  • Micro injection moulding of small plastic elements
  • Cutting plastic or metal micro elements
  • Mechanical and optical material examination

The group’s expertise and infrastructure are available for applications beyond biological microsystems technology.
See www.th-wildau.de/en/im-studium/fachbereiche/igw-studiengaenge/bb-forschu...

Technical University Wildau

Hochschulring 1
15745 Wildau

T: +49 (0)3375-508119
UP Transfer GmbH an der Universität…, PotsdamResearch Institution, Laser Technology, Lighting Technology, Photonics and Quantum Technologies for Communication and Sensors, Optical Analytics, Biophotonics and Ophalmic Optics, Microelectronic and Mikrosystems Technology

The main task of the company is to organize a modern and competitive knowledge and technology transfer at the University of Potsdam as well as in the region, but also on a national and international scale. The goal is the effective addition of excellence in research and teaching by a professional transfer of results from science and research.

The Department of Executive Education currently focuses on:
• Master degree programs in the areas of Public Administration and Private Management,
• Certificate courses in Mediation
• Scientific training courses;
• International projects in further education;
• Projects for refugees and migrants.

The projects of the Department of Applied Research &amp Development mainly focus on:
• Basic research;
• Applied research and development;
• Contract research;
• Scientific and technical consulting and services.

Important research areas are especially antibody research, inorganic chemistry research to improve the recycling of valuable precious and rare earth metals, laser development, material research of innovative polymer materials, geoscience research and consulting services.

The Department of UP Transfer Services offers the following services:
• Conference services mainly for scientific events;
• Patent licensing for higher education and research institutions of Brandenburg (Project “Brainshell”);
• UniShop of the University of Potsdam, selling a great variety of merchandising products;
• Project management and controlling;
• Administrative services.

UP Transfer GmbH an der Universität Potsdam

Am Neuen Palais 10
14469 Potsdam

T: 0331/977-1119